If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-6x-1.73=0
a = 1; b = -6; c = -1.73;
Δ = b2-4ac
Δ = -62-4·1·(-1.73)
Δ = 42.92
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-\sqrt{42.92}}{2*1}=\frac{6-\sqrt{42.92}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+\sqrt{42.92}}{2*1}=\frac{6+\sqrt{42.92}}{2} $
| 75.60=18.9v | | 6=q-67/4 | | 3x-2+5/24=5x/8+13/12 | | 2=2q−4 | | 0=9b^2-162b | | 21=3/4k | | 8(u-4)=4u+8 | | 5(x-7)+3=5x-31 | | 32/u=-8 | | 50=25a | | 9v-48=-4(v-1) | | -2(x+7)=4x+46 | | 32=2w+28 | | 0.5(x-16)=31+7x | | 5x+24+x+36=180 | | 3(9x-4x)=0 | | 2(x+5)^2=32 | | -60=9x=3 | | 12x2+31x+13=-7 | | h(23)=2(23)-5 | | x2-49=48x | | 3(x+8)=2(2x+160 | | 7x+5(-2x+4)=-10 | | 142.8=2.55h+73.95 | | 63-12x=15 | | 16=-8t+72 | | 3q+8(2q-6)=2+14q | | 7x(8x-3)=0 | | 12x-6x+x-3x-3=13 | | 60=6m | | -4(-2x+1)=4x+7 | | 23x-103=180 |